Choosing the right gene editing technology

February 18-19, 2016, San Diego-CA, USA

The Genome Editing & Engineering Conference brings together the key industry leaders and researchers to address the concepts, challenges and state of art methods & applications of the genome editing tools like CRISPR/Cas9, TALENs, ZNFs. Case studies and sessions will reveal the potential application of genome editing tools from the modern biomedical & therapeutic applications. Special emphasis on CRISPR system addressing the concept, technology, challenges like off-target effects, efficiency improvement and delivery systems.

Attendees at the event will learn about:

- ▶ Cutting edge therapeutic applications of genome editing tools: CRISPR/Cas9, TALEN, and ZFN
- Overcoming challenges in CRISPR and other genome editing tools
- Future opportunities of CRISPR/Cas9 and other genome editing technologies
- Genome editing approaches to accelerate drug discovery, target identification, validation and screening
- Genome editing towards cell line engineering and disease model development
- Genome editing application towards animal modeling or transgenic animal
- Regulatory challenges faced in genome editing

Conference Highlights

- 15+ case studies on genome editing applications
- Hands on workshop: Sequencing animal models and overcoming delivery system through CRISPR technology
- Presentations from the pharma industry
- Open forum to discuss the best tool for your research

Choosing the right gene editing technology

February 18-19, 2016, San Diego-CA, USA

Day 1, Thursday, February 18th

08:15 am Registration & Refreshment

- 08:45 am Welcome Note from MnM Conferences
- 08:50 am Opening remarks from the Chair

09:00 am Keynote Presentation

- An Historical Perspective on the Development and Principles of Gene Editing Technologies
- Historical context, Comparision between Gene Therapy & genome Engineering, nomenclature, different mechanisms, methods and applications
- Classes of Edits or Modifications: Knockout, Knockin (gene or gene segments), Point Edits, Large Deletions
 Prof. Eric B. Kmiec, Director, Gene Editing Institute Center for Translational Cancer Research, Helen F. Graham Cancer
 Center & Research Institute, DE, USA

09:30 am Hit and seek: Improved targeting and indel identification methodologies for genome editing

- Gene editing workflow based on nuclease GFP tagging and a novel Indel Detection by Amplicon Analysis (IDAA) method
- IDAA is based on a simple amplicon labelling strategy and automated Capillary Electrophoresis.
- IDAA is enable to high throughput detection and characterization of indels induced by precise gene targeting.
- IDDA is cost effective and generates indel profiles similar to Sanger and "deep sequencing" with sub-percentage indel detection sensitivity.
- IDAA is highly useful for genome editing surveillance
- Dr. Eric Paul Bennett, Associate Professor, Copenhagen Center for Glycomics (CCG), Denmark

Methods of Genome Editing and Engineering: Concept, Technology & Challenges

10:00 am	Presentation:TBA Dr. Gregory Alberts, Field Sales and Service Manager, Lonza Pharma Bioscience Solutions
10:30am	Morning Refreshments and Poster Presentation One-to-One Networking Meetings
11:10am	 CRISPR-revolution led paradigm-shifts in animal genome editing approaches Introduction to the long-used traditional animal transgenic technologies, using mouse as a model organism. Paradigm shifts in animal transgenic technologies caused by the CRISPR/Cas9 system Latest advances in CRISPR/Cas9 genome editing platforms that have completely relieved the bottlenecks of long-used transgenic technologies Dr. C. B. Gurumurthy, Director, Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, NE, USA
11:40 am	 Introduction to genome editing and engineering RNA editing mechanisms and methods Applications of RNA editing New editing approaches in the context of prior editing literature Comparing therapeutic editing to gene therapy Dr. Tod Woolf, Founder and President, ETAGEN Pharma, MA, USA
12:10pm	 RNA guided genome engineering: new expansion of Cas9 toolbox and in vivo application New animal models using CRISPR-Cas9 In vitro genome editing in postmitotic neurons using SpCas9 In vivo genome editing in the mouse brain using SpCas9 Applications of SaCas9 for genome editing in brain and liver Dr. Matthias Heidenreich, Post-Doctoral Fellow, Feng Zhang Lab, Broad Institute, MA, USA

For more information please contact Sneha at sneha.singh@mnmconferences.com | +91 8600 524 246

Day 2, Friday, February 19th

08:30 am	Registration & Refreshment	
08:50 am	Opening remarks from the Chair	
09:00 am	 Therapeutic Approach: Applying gene editing in T-cell immunotherapy TALEN engineered T-cells Allogeneic CAR T-Cell based therapies Drug resistance Checkpoint inhibition Dr. Philippe Duchateau, Chief Scientific Officer, Cellectis, France 	
09:30am	Solution provider's presentation: Keynote-2	
Therapeutic Application of Genome Editing (CRISPR, ZFN, & TALEN)		
10:00am	 Elucidating Telomere Function in Human Tumor Biology Developing tools for genome editing in human pluripotent stem cells Using genome editing to test genome wide association studies (GWAS) Editing cancer associated mutations in stem cell models e.g. TERT promoter mutations Development of tissue specific cancer models using in vitro differentiation of edited cells Dr. Dirk Hockemeyer, Principal Investigator, University Of California-Berkeley, CA, USA 	
10:30am	 Therapeutic in vivo delivery of CRISPR/Cas9 for next generation gene therapy Development and characterization of RNA therapy delivery systems RNA delivery in: in in vivo & in vitro systems Discuss the successful RNA therapy in case of disease like-Viral infection, Hemophilia & other genetic disease Dr. Hao Yin, Research Scientist, David H. Koch Institute for Integrative Cancer Research, MIT, MA, USA 	
11:00am	Morning Refreshment and Poster Presentation One-to-One Networking Meetings	
11:40am	 Genome therapy for nucleotide repeat expansion-mediated neurodegenerative diseases Introduction of monogenic, neurodegenerative diseases caused by nucleotide repeat expansion: Muscular dystrophies, Spinocerebellar Ataxias, Motor neuron disease. Mechanism of RNA/protein gain-of-function from nucleotide repeat expansion. Strategies of genome manipulation for nucleotide repeat expansion diseases Genome therapy of Myotonic Dystrophy Type 1 iPS cells Prospect of in vivo genome therapy. Dr. Guangbin Xia, Department of Neurology, College of Medicine, University of Florida, USA 	
12:10pm	 High-throughput gene targeting using CRISPR/Cas9 for human disease modeling in zebrafish High-throughput method of CRISPR/Cas9 gene editing in zebrafish Multiplex gene editing method Optimize sgRNA design for improved targeted efficiency Orthogonal Cas9 for expanding gene targeting coverage High-throughput phenotyping for studying function of human deafness genes in zebrafish. Dr. Gaurav K. Varshney, National Human Genome Research Institute, National Institutes of Health, NY, USA 	
Genome Editing application for Drug Discovery & Screening: Use of CRISPR/Cas9 & other tools		
10.40	Fundamenta (DISPR / Caro) for bigh three where the end on it. (UTC)	
12:40pm	 Explore the Use CRISPR/Cas9 for high throughput screening (HIS) How CRISPR/Cas9 is replacing existing technologies (e.g. RNAi) What are the advantages, limitations and challenges? 	

- What are the new types of screens that CRISPR/Cas9 enables (epigenetics, in-vivo, etc.)
- Dr. Rob Howes, Associate Director, HTS, Antibody Discovery and Protein Engineering, MedImmune, UK

For more information please contact Sneha at sneha.singh@mnmconferences.com | +91 8600 524 246

